metal-organic papers

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bing-Xin Liu,^a Jian-Yong Yu^a and Duan-lun Xu^b*

^aDepartment of Chemistry, Shanghai University, People's Republic of China, and ^bDepartment of Chemistry, Zhejiang University, People's Republic of China

Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study T = 295 K Mean $\sigma(C-C) = 0.002$ Å R factor = 0.025 wR factor = 0.063 Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(2,2'-Diamino-4,4'-bi-1,3-thiazole- $\kappa^2 N, N'$)bis(glycinato- $\kappa^2 N$,O)nickel(II) dihydrate

In the crystal structure of the title compound, $[Ni(C_2H_4NO_2)_2 (C_6H_6N_4S_2)$]·2H₂O, the Ni^{II} atom is located on a twofold axis and is coordinated by a diaminobithiazole ligand and two glycinate anions in a distorted octahedral geometry. The glycinate anions chelate to the Ni^{II} atom through the amino N and carboxyl O atoms, and display an envelope conformation. Hydrogen bonding consolidates the crystal structure.

Comment

As metal complexes containing the diaminobithiazole (DABT) ligand have shown interesting magnetic properties (Sun et al., 1997), a series of transition metal complexes incorporating DABT has been prepared in our laboratory (Liu & Xu, 2004). As part of the ongoing investigation into the structures of the DABT complexes, we present here the structure of the title Ni^{II} complex, (I).

The molecular structure of (I) is shown in Fig. 1. The complex has a distorted octahedral coordination geometry, formed by one DABT and two glycinate ligands. The Ni atom and the mid-point of the C-C bond linking the two thiazole rings are located on a twofold axis. The Ni^{II} complex is isomorphous with the Co^{II} complex (Yu et al., 2005). The Ni-O and Ni–N bond distances in (I) (Table 1) are about 0.04 Å shorter than the corresponding Co-O and Co-N bond distances found in the Co^{II} analogue.

A hydrogen-bonding network (Table 2) consolidates the crystal structure of (I).

Experimental

An aqueous solution (20 ml) containing DABT (0.20 g, 1 mmol) and NiCl₂ (0.13 g, 1 mmol) was mixed with an aqueous solution (10 ml) of glycine (0.15 g, 2 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. The solution was filtered after cooling to room temperature. Green single crystals of (I) were obtained from the filtrate after three days.

© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Received 16 December 2005 Accepted 3 January 2006 Online 7 January 2006

Crystal data

 $[Ni(C_2H_4NO_2)_2(C_6H_6N_4S_2)]\cdot 2H_2O$ $M_r = 441.13$ Monoclinic, C2/c a = 13.0342 (12) Å b = 8.9631 (11) Å c = 14.0836 (12) Å $\beta = 92.811$ (8)° V = 1643.4 (3) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{min} = 0.678, T_{max} = 0.795$ 8498 measured reflections

Refinement

-	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.031P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.025$	+ 1.8149P]
$wR(F^2) = 0.063$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} = 0.001$
1888 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
114 parameters	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected bond lengths (Å).

Ni-O1	2.0958 (11)	Ni-N3	2.0918 (13)
Ni-N1	2.1177 (13)		

Table 2

			~	
TT.			. / A	0)
H١	πητοφέη-ποπά	geometry	IA	- 1
. .	anogen oona	geometry	(11,	,

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O1w - H1A \cdots O1^{iii}$	0.91	2.12	2.947 (2)	150
$O1w - H1B \cdots O2$	0.89	2.02	2.884 (2)	164
$N2-H2A\cdots O2^{ii}$	0.89	2.09	2.923 (2)	157
$N2-H2B\cdotsO1^{i}$	0.82	2.42	3.068 (2)	136
N3-H3 A ···O1 w^{iv}	0.90	2.28	3.098 (2)	151
$N3-H3B\cdots O2^{v}$	0.87	2.45	3.2814 (19)	160
	(1)	1	(II) 1 .	3 1 ()

Symmetry codes: (i) $-x + 1, y, -z + \frac{1}{2}$; (ii) $x - \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$; (iii) -x + 1, -y + 2, -z + 1; (iv) $x, -y + 2, z - \frac{1}{2}$; (v) $-x + \frac{3}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$; (iii)

The C-bound H atoms were placed in calculated positions with C-H distances of 0.93 Å (aromatic) or 0.97 Å (methylene), and included in the final cycles of refinement in riding mode with $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. Other H atoms were located in a difference

 $D_x = 1.783 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 1802 reflections $\theta = 2.8-26.0^{\circ}$ $\mu = 1.48 \text{ mm}^{-1}$ T = 295 (2) K Prism, green $0.25 \times 0.22 \times 0.15 \text{ mm}$

1888 independent reflections 1749 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$ $\theta_{\text{max}} = 27.5^{\circ}$ $h = -16 \rightarrow 16$ $k = -11 \rightarrow 11$ $l = -18 \rightarrow 18$

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate the hydrogen bonding [symmetry code: (i) -x + 1, y, $-z + \frac{1}{2}$].

Fourier map and refined as riding in their as-found relative positions (Table 2) with $U_{iso}(H) = 1.5U_{eq}$ (carrier atom).

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *CrystalStructure* (Rigaku/ MSC, 2002); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1993); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, B.-X. & Xu, D.-J. (2004). Acta Cryst. C60, m137-m139.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.

- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sun, W., Gao, X. & Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309–2315.
- Yu, J.-Y., Liu, B.-X. & Xu, D.-J. (2005). Acta Cryst. E61, m2232-m2233.