Bing-Xin Liu, ${ }^{\text {a }}$ Jian-Yong Yu^{a} and Duan-Jun Xu ${ }^{\text {b }}$ *

${ }^{\text {a D Department of Chemistry, Shanghai University, }}$ People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, Zhejiang University, People's
Republic of China
Correspondence e-mail: xudj@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.063$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(2,2'-Diamino-4, $\mathbf{4}^{\prime}$-bi-1,3-thiazole- $\kappa^{2} N, N^{\prime}$)-bis(glycinato- $\kappa^{2} N, O$)nickel(II) dihydrate

In the crystal structure of the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the $\mathrm{Ni}^{\text {II }}$ atom is located on a twofold axis and is coordinated by a diaminobithiazole ligand and two glycinate anions in a distorted octahedral geometry. The glycinate anions chelate to the $\mathrm{Ni}^{\mathrm{II}}$ atom through the amino N and carboxyl O atoms, and display an envelope conformation. Hydrogen bonding consolidates the crystal structure.

Comment

As metal complexes containing the diaminobithiazole (DABT) ligand have shown interesting magnetic properties (Sun et al., 1997), a series of transition metal complexes incorporating DABT has been prepared in our laboratory (Liu $\& \mathrm{Xu}, 2004)$. As part of the ongoing investigation into the structures of the DABT complexes, we present here the structure of the title $\mathrm{Ni}^{\mathrm{II}}$ complex, (I).

The molecular structure of (I) is shown in Fig. 1. The complex has a distorted octahedral coordination geometry, formed by one DABT and two glycinate ligands. The Ni atom and the mid-point of the $\mathrm{C}-\mathrm{C}$ bond linking the two thiazole rings are located on a twofold axis. The $\mathrm{Ni}^{\mathrm{II}}$ complex is isomorphous with the $\mathrm{Co}^{\text {II }}$ complex (Yu et al., 2005). The $\mathrm{Ni}-$ O and $\mathrm{Ni}-\mathrm{N}$ bond distances in (I) (Table 1) are about $0.04 \AA$ shorter than the corresponding $\mathrm{Co}-\mathrm{O}$ and $\mathrm{Co}-\mathrm{N}$ bond distances found in the $\mathrm{Co}^{\mathrm{II}}$ analogue.

A hydrogen-bonding network (Table 2) consolidates the crystal structure of (I).

Experimental

An aqueous solution (20 ml) containing DABT $(0.20 \mathrm{~g}, 1 \mathrm{mmol})$ and $\mathrm{NiCl}_{2}(0.13 \mathrm{~g}, 1 \mathrm{mmol})$ was mixed with an aqueous solution $(10 \mathrm{ml})$ of glycine ($0.15 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{NaOH}(0.08 \mathrm{~g}, 2 \mathrm{mmol})$. The mixture was refluxed for 6 h . The solution was filtered after cooling to room temperature. Green single crystals of (I) were obtained from the filtrate after three days.

Received 16 December 2005
Accepted 3 January 2006
Online 7 January 2006

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{~S}_{2}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=441.13$
Monoclinic, $C 2 / c$
$a=13.0342$ (12) \AA
$b=8.9631$ (11) A
$c=14.0836$ (12) \AA
$\beta=92.811$ (8) ${ }^{\circ}$
$V=1643.4(3) \AA^{3}$
$Z=4$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.678, T_{\text {max }}=0.795$
8498 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.063$
$S=1.05$
1888 reflections
114 parameters
H -atom parameters constrained

$D_{x}=1.783 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 1802
reflections
$\theta=2.8-26.0^{\circ}$
$\mu=1.48 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Prism, green
$0.25 \times 0.22 \times 0.15 \mathrm{~mm}$

1888 independent reflections
1749 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-16 \rightarrow 16$
$k=-11 \rightarrow 11$
$l=-18 \rightarrow 18$

$$
\begin{aligned}
w= & 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.031 P)^{2}\right. \\
& +1.8149 P]
\end{aligned}
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.34 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

$\mathrm{Ni}-\mathrm{O} 1$	$2.0958(11)$	$\mathrm{Ni}-\mathrm{N} 3$	$2.0918(13)$
$\mathrm{Ni}-\mathrm{N} 1$	$2.1177(13)$		

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 A \cdots \mathrm{O} 1^{\text {iii }}$	0.91	2.12	$2.947(2)$	150
$\mathrm{O}^{2} w-\mathrm{H} 1 B \cdots \mathrm{O} 2$	0.89	2.02	$2.884(2)$	164
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{2 i}$	0.89	2.09	$2.923(2)$	157
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1^{\mathrm{i}}$	0.82	2.42	$3.068(2)$	136
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O} 1 w^{\text {iv }}$	0.90	2.28	$3.098(2)$	151
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O}^{\mathrm{v}}$	0.87	2.45	$3.2814(19)$	160
Symmetry codes:	(i) $-x+1, y,-z+\frac{1}{2} ;$	(ii) $x-\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2} ;$	(iii)	
$-x+1,-y+2,-z+1 ;$ (iv) $x,-y+2, z-\frac{1}{2} ;(\mathrm{v})-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{1}{2}$.				

The C -bound H atoms were placed in calculated positions with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ (aromatic) or $0.97 \AA$ (methylene), and included in the final cycles of refinement in riding mode with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Other H atoms were located in a difference

Figure 1
The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms); dashed lines indicate the hydrogen bonding [symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$].

Fourier map and refined as riding in their as-found relative positions (Table 2) with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}($ carrier atom).

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (grant No. AB0448).

References

Altomare, A., Cascarano, G., Giacovazzo, C. \& Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Liu, B.-X. \& Xu, D.-J. (2004). Acta Cryst. C60, m137-m139.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Version 3.00. Rigaku/MSC, 900 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sun, W., Gao, X. \& Lu, F.-J. (1997). Appl. Polym. Sci. 64, 2309-2315.
Yu, J.-Y., Liu, B.-X. \& Xu, D.-J. (2005). Acta Cryst. E61, m2232-m2233.

